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ABSTRACT 

Local adaptation is characterized by higher reproductive fitness by individuals 

present in their native habitats relative to nonlocals. This study utilized Campanulastrum 

americanum as a model for assessing whether an environmental gradient can facilitate 

local adaptation. In particular, I determined if a latitudinal gradient across eastern United 

States has influenced the phenology and reproductive fitness of five northern and four 

southern C, americanum populations. These populations were reciprocally transplanted 

into two common garden sites positioned in the most northern and southern extent of the 

species distribution: Hastings, MI and Columbus, GA. I observed adaptive population 

differentiation of northern and southern populations. Both reproductive and phenological 

traits of plants of southern origin were differentiated from plants of northern origins and 

under selection. There was also significant selection towards earlier flowering initiation. 

Earlier flowering, along with faster bolting rate and delayed fruit maturation has assisted 

in maximizing reproductive fitness of southern populations in the south. While, earlier 

flowering, delayed fruit maturation, and delayed bolting has facilitated higher fitness of 

northern populations in the northern part of the species range. This study demonstrates 

that selection may occur across a species distribution, creating locally adapted 

populations. 
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INTRODUCTION 

Local adaptation has an influential role in maintenance of genetic and phenotypic 

diversity, facilitating ecological speciation, and expanding species ranges (Levene 1953; 

Felsentein 1976; Hendrick 1986; Kirpatrick & Barton 1997; Tiffin & Ross-Ibarra 2014). 

It is characterized by a higher level of Darwinian fitness expressed by individuals present 

in their native habitats relative to foreigners (William 1966). The occurrence of local 

adaptation is dependent on the interactions between evolutionary forces (ie: selection, 

gene flow, drift, and mutations), and the presence of heterogeneous environmental 

conditions that create variation in selection pressures (Blanquart et al. 2013). Studies 

have utilized geographical variations, such as latitudinal clines to address how local 

adaptation can relate to environmental variation (Mitchell-Old et al. 2007; Svetec et al. 

2015). 

Environmental factors can differ throughout a species distribution, creating spatial 

heterogeneity among populations; thereby exerting selective pressures that can drive 

divergent changes in population genetic structure among populations (Hunter 2006; Coop 

etal. 2010;Eckerte/a/. 2010; Tanja et al. 2013). These changes reflect adaptive gene 

complexes that confer benefits (higher fitness) for a phenotype in particular set of 

environmental conditions (Levene 1953; Felsentein 1976; Hedrick et al. 1976; Hedrick 

1986; Galloway & Fenster 2000; Kawecki & Ebert 2004; Riis et al. 2010; Anderson et al. 

2011; Luquet et al. 2015). Overtime, the frequency of these changes accumulates, 

forming genetically and physiologically distinct populations (Hunter 2006). Thus, 

environmental variation has major implications on genetic and subsequent phenotypic 

differentiation of organisms (Miller & Fowler 1994; Ward et al. 2012). Phenotypic 
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variation due to underlying genetic differences among individuals can serve as evidence 

of populations adapting to their local environments (Clausen et al. 1940; Linhart & Grant 

1996; Miaud & Merila 2001; Garcia el al. 2007; Feder & Nosil 2010; Blanquart et al. 

2012; LeCorre & Kremer 2012). 

Phenotypic variation can also be a by-product of differences in genotype expression 

in response to environmental heterogeneity, also referred to as phenotypic plasticity 

(Scheiner 1993; Scheiner & Lyman 1991; Agrawal 2001; Pigliucci 2005; Gratani 2014). 

The advantage of plasticity is that multiple phenotypes can be expressed depending on 

the environment, allowing organisms to deal with unpredictability (Fordyce 2006; 

Ghalambor et al. 2007; Fusco & Minelli 2010; Scheiner 2014). Most importantly, it 

provides a variety of phenotypes for natural selection to act upon (Lazzaro et al. 2008). 

Phenotypic plasticity becomes adaptive when a phenotype confers higher fitness within a 

particular environment that has no associated genetic differentiation (Kawecki & Ebert 

2004; Kleunen & Fischer 2005; Volis et al. 2005; Beldade et al. 2011; Ward et al. 2011). 

The environment drives genetic changes in populations that promote adaptation as well as 

promote variable gene expression that has the potential to become adaptive as well. 

Genetic differentiation of populations may also reflect coordination of phenology 

with their environment to maximize their fitness (Rathcke & Lacey 1985; Reeekie & 

Bazzaz 1987; Kozlowski 1992; Levin 2006). Organisms, such as plants have some 

indication of conditions present in their environment by relying on specific 

environmental elements as cues such as temperature and amount of light (Karban 2008). 

Growth and reproduction phenology is in accordance with these cues to ensure that 

reproduction occurs in the most appropriate set of environmental conditions. In the case 
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of a plant, flowering, fruiting and seed dispersal are key aspects of reproduction, and a 

vital determinant of an organism's fitness (Kim et al. 2009). 

Gene x environment interaction not only facilitates the occurrence of local 

adaptation (Kawecki & Ebert 2004), but also influences the fitness of hybrids between 

locally adapted populations. Hybrids may have fitness higher than either parent (hybrid 

vigor or heterosis) or their fitness can be lower, outbreeding depression (Darwin 1867; 

Dobzhansky 1951; Lynch 1991; Muller 1942; Arnold et al. 1999; Whitlock et al. 2000; 

Truelli et al. 2001; Lippman & Zamir 2007; Orr 1995; Willet 2012). In many plant 

species, the positive effects of heterozygosity on fitness are usually observed during the 

Fl generation, due to overdominance or masking of recessive deleterious alleles (Waser 

& Price 1994; Fenster & Galloway 2000; Waser et al 2000; Willi & Van Buskirk 2005). 

Outbreeding depression is often more evident in later generations due to epistatic 

incompatibility (Levin 1978; Lynch 1991; Edmands 2007). This form of genetic 

incompatibility is described as a reproductive failure, but it is formally referred to as 

hybrid breakdown (Oka et al. 2004; Yasumoto & Yahara 2008; Burton et al. 2013). 

Dobzhansky-Muller model offers an explanation of how and why this genetic 

incompatibility arises within later generations (Orr 1995; Coyne & Orr 2004; Fitzpatriek 

2008). When populations are isolated, some mutations are favored by natural selection 

and increase in frequency. When populations mate, these mutations interact during 

recombination and contribute to a reduction in offspring fitness (Felsenstein 1974; Muller 

1964; Edmands 2007). 

The American Bellflower {Campanulastrum americanum (L.) Small is a plant 

species with a wide distribution and exhibits diverse morphological and phenotypic traits 
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(Galloway & Etterson 2005; Etterson et al. 2007). This makes this species an ideal model 

for assessing the relationship between geographic (latitude) and phenotypic variation, and 

if phenotypic variations indicate adaptive population differentiation. Given the potential 

for adaptation to occur across its range facilitated by differences in environmental 

conditions, latitudinal variation in phenological and reproductive traits can serve as lines 

of evidence of local adaptation for this species. Variation in flowering time has been 

observed within and among populations of C. americanum (Burgess et al. 2007; 

Galloway & Burgess 2009). This variation has likely evolved in accordance to cues 

present in their local environment that reduces the risk of floral damage and incomplete 

seed development, and increases the availability of potential mates (Anderson et al. 

2011). 

The overall goal of my study is to determine if environmental differences that reside 

along a latitudinal gradient has facilitated local adaptation of C. americanum populations. 

The four specific objectives of my study are as follows: 1) Assess if populations of C. 

americanum are locally adapted by comparing reproductive traits across common garden 

sites, 2) Assess if phenological traits vary across sites and if they are adaptive, 3) To 

determine if variations in reproductive and phenological traits are consistent with 

adaptive differentiation, and 4) Determine the fitness of hybrids and magnitude of hybrid 

breakdown. 
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METHODS 

Study System 

Campanulastrum americanum (L.) Small (=Campanula americana L., 

Campanulaceae) is an autotetraploid herb that has an expansive distribution across 

eastern and central North America (Prendeville et al. 2013). Populations are typically 

found in disturbed habitats and occupied by deciduous forest (Galloway et al. 2003, 

Galloway 2005). Populations exhibit diverse morphological and phenotypic traits such as 

number of days to seed emergence, number of days to flower initiation, number of 

branches, number of fruits, and plant size (Kalisz & Wardle 2004; Galloway & Etterson 

2005; Etterson et al. 2007; Burgess et al. 2007; Haggerty & Galloway 2011). Flowering 

phenology and timing of germination are closely associated with one another in this 

species. Timing of germination influences when rosettes are vernalized which must occur 

to initiate bolting, and thus also impacts when flowering initiation will occur. 

Creating experimental seeds for Parents and Offspring 

Seeds were sampled from nine populations of C. americanum along a latitudinal 

gradient in 2008 (methods noted in Prendeville et al 2013). Five populations were 

located in the northern (MI, MN, NE, OH, and WI) region of the species range, and the 

remaining four resided in the southern (AL, MS, OK, and TN) region (Figure 1, 

Appendix A). Seed collected from each population contained 15-20 families, to account 

for genetic variation that may exist within each population. In 2011, ten seeds from 

family per were sowed in planting trays containing 3 Metromix: 1 Turface. Trays were 

placed in a growth chamber at University of Virginia with 25 °C day/ 14°C night, 12-hr 



www.manaraa.com

days for four weeks. If multiple seeds germinated then seedlings were thinned to one. 

Trays were then placed in a cold room set at 5 °C and 12-hr days for 7 weeks. Seedlings 

were transplanted to containers and move to a greenhouse. Plants were watered on daily 

basis and exposed to a 16-hr light cycle. Once individuals developed three flowers or one 

week had past since the day of first flower, hand pollination occurred. Within a 

population individuals were crossed between different families to establish a line of 

parents. A Fl hybrid generation was established by crossing individuals belonging to 

different populations noted by state abbreviation: WIxMS, MNxOK, NExAL, OHxOK, 

TNxMN, and MSxMI (Figure 1). Then reciprocal crosses of these Fl population cross- 

types were also performed using the same set of pollen donors and pollen recipients to 

generate F2 hybrids. Generations associated with reciprocal crosses were noted with an 

"R". Fruits were collected when mature and placed in cool storage until seeds were ready 

to be used for the seed germination experiment in July 2012. A subset of these seeds was 

also planted in plug trays, following the above procedure in December 2012. After 

germination seedlings were exposed to 5 °C for 47 days and then utilized in the rosette 

transplant experiment. 

Seed germination experiment 

To address questions of whether populations exhibit higher fitness within their 

native range and if phenological patterns are indicative of adaptive differentiation, a 

reciprocal transplant experiment was performed. Seeds from each population were 

planted on 4-5 & 10-11 August 2012, in two common garden sites, respectively: the 

Pierce Cedar Creek Institute in Hastings, Michigan and Columbus State University's 
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Oxbow Meadows Environmental Learning Center in Columbus, Georgia. Each site 

contained 30 blocks (26.7 cm by 34.3cm) consisting of nine sleeves. There is some 

variation in the number of seeds per replicate amongst the populations. In one set of 

populations (AL, MI, MS, TN, and WI), 10 seeds were planted in each replicate and 

represented once in each block. A total of 30 replicates in each site contained a 

representative of this set of parents (10 seeds/replicate x 1 replicate/block x 30 blocks = 

600 seeds/population/site). The remaining population set (NE, OK, MN, and OH) had 

five seeds per sleeve and one replicate per block (5 seeds/replicate x 1 replicate/block x 

30 blocks =150 seeds/population/site). The total number of germinants present in each 

replicate and number of days to germination was monitored in Georgia and Michigan on 

a bi-weekly basis until 31 May & 2 June 2013, respectively. Another round of planting 

occurred on 21 August 2013 at Pierce Cedar Creek Institute and 24 August 2013 at 

Oxbow Meadows, and germination was monitored until 25 April 2014 at Oxbow 

Meadows and 28 May 2014 at Pierce Cedar Creek Institute. During the second year, 

blocks consisted of five peat pot trays (nine pots per block). Seeds were planted and 

observed over a similar period as the previous year's experiment. 

Two response variables were scored. Percent germination was calculated by 

dividing the maximum number of germinants that emerged in a germination replicate by 

the total number of seeds planted. Minimum time to germination was the number of days 

between when the seeds were planted and when the germinant(s) were first observed. 
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Rosette transplant experiment 

I also transplanted rosettes to assess phenology and reproductive traits independent 

of any effects of local adaptation on germination. A total of 317 rosettes were 

transplanted to each common garden site on 3-4 March 2014 at Oxbow Meadows and 11- 

13 April 2014 at Pierce Cedar Creek Institute. They were randomly assigned to one of 

eight blocks and planted 25 cm apart. There is an unbalanced design due to uneven 

germination and survival. AL, MI, MS, TN, and WI had 17-24 replicates per site, 

populations NE, OK, MN, and OH had 14-16 replicates/site, and MN had 8 

replicates/site. Additionally, there were 11-15 replicates for the F2 associated with each 

parental cross. Survival was monitored weekly until bolting was evident at which point 

plants were checked daily for initiation of flowering. 

Traits were measured to describe reproductive phenology. Height prior to flowering 

was determined by conducting a census of plant height prior to the opening of the very 

first flower of the season (19 June 2014 at Oxbow Meadows and 16 July 2014 at Pierce 

Cedar Creek Institute). A plant was measured from the base to the tip of the meristem. 

Height at first flower was taken on the day that the first flower on an individual plant was 

observed as just opened. The ratio of height prior to flowering and height at flowering is 

an index of bolting rate. Once the very first flower of the season opened, day of first 

flower was scored every three days. Number of days to first flower was difference 

between when rosettes were transplanted and when the first flower was observed on an 

individual. To monitor fruit maturation, a segment of the mainstem was marked off with 

twist ties on day of first flower. The first open flower was the first node of this segment, 

and the next four nodes above this node made up the segment. Fruit maturation was 
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monitored on a weekly basis in this marked segment until 31 October 2014 at Oxbow 

Meadows and 2 November 2014 at Pierce Cedar Creek Institute. Minimum number of 

days to fruit maturation was the difference between when a flower first appeared and 

when maturation was first noted in the marked node region. 

I also measured a suite of size and reproductive traits. Total branch length was 

calculated by adding the length of all the branches on an individual plant measured on the 

day of first flower. Flower production was monitored on a weekly basis. The total 

number of flowers was calculated by summing the total number of opened flowers scored 

each week until 31 October 2014 at Oxbow Meadows and 2 November 2014 at Pierce 

Cedar Creek Institute. Two near-mature fruits were collected, i.e. brown in color but 

pores not open. Fruits were collected at random from one or two nodes above or below 

the marked node region. The total numbers of seeds per fruit was determined by taking 

the average of seeds produced by two fruit samples. 

Plants were harvested when 80-100% of fruits in the marked node region were 

mature. Plants were cut at the very base of the stem, just above the ground. If conditions 

were wet, the plants were placed in a drier (85°F) for 3-5 days. On the other hand, if 

conditions were very dry, drying was not required. Biomass was determined by weighing 

dried harvested plants. Fruit number was determined by counting fruits on harvested 

plants as well as any fruits that fallen off and present at the bottom of collection bags. 

If a weekly census was missed, it was conducted a day after the designated census 

date. If a three day census was missed it was conducted on the next scheduled date, and it 

was noted that data reflected flowering activity that had occurred over two census 

10 
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periods. Lastly, any measurements of individual plants that were not taken on the day of 

first flower were collected on the next scheduled three day census. 

Statistical Analyzes 

Assessing local adaptation 

Phenological, size and fitness traits were compared across common garden sites and 

populations using an ANCOVA (JMP Statistical software Version 12, SPSS Statistics 

Version 23). The model included fixed effects of "origin," whether populations 

originated from the north or south, "site" as planting location, and random effects 

population nested in origin and block nested in site. For germination traits, "year" was 

also included as a fixed effect and block was nested in year and site. An origin x site 

interaction would provide evidence that performance of populations of each origin 

differed between sites. Local adaptation would be supported if populations native to the 

region exhibit higher reproductive fitness than populations from different latitudes. 

Tukey HSD was used to assess which traits means were statistically different within and 

across sites. To meet assumptions of normality, days to germination and percent 

germination were log-transformed. All remaining reproductive and phenological traits 

were log+1-transformed. 

I also assessed local adaptation by calculating cumulative fitness of individuals 

from different source origins by multiplying the number of seeds per fruit by total 

number of fruits. An ANOVA was conducted to compare cumulative fitness associated 

with each origin within and across sites. Site, origin, and site x origin were fixed effects, 

while population nested in origin and block nested in site were random effects. 

11 
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Phenotypic selection analysis 

A phenotypic selection analysis was performed to assess if phenotypic plasticity 

observed in each common garden site was adaptive (Lande & Arnold 1983), and if 

patterns of selection varied across sites. Nine parental populations were included in this 

analysis. Both phenological (number of days to first flower and bolting rate), size 

(biomass, total branch length, and height at flowering), and reproductive (total number of 

flowers, seeds/fruit) traits were included. All of these traits were first standardized to a 

mean of zero and unity of variance prior to conducting the analysis. I also assessed for 

correlations and multicollinearity among the traits. Pearson product-moment correlation 

coefficients revealed that total number of fruits was significantly correlated with biomass, 

total number of flowers, and height at flower (Appendix Bl, B2). Variance inflation 

factors generated were all less than three, indicating that results of this analysis was not 

influenced by multicollinearity that exists among these traits 

Total number of fruits was used as measure of relative fitness. Fruit counts at each 

site were divided by the associated site mean. Standardized linear selection gradients (P), 

were generated by performing a multiple regression of relative fitness on standardized 

traits to obtain partial regression coefficients. Standardized nonlinear selection gradients 

(y) are doubled parameter estimates generated from a multiple regression of relative 

fitness on standardized traits and their squares. Population was included as blocking term 

for both multiple regression analyzes. To test whether each gradient (selection) 

significantly varied across sites ANCOVAs were performed, in which standardized 

phenological traits were assigned as covariates and common garden site was a fixed 

effect. 

12 
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Assessment of hybrid breakdown 

To test whether hybrid breakdown occurred in between population crosses, an 

ANOVA (JMP Statistical software Version 12.0) was performed with generation, cross, 

site, generation x site, generation x cross, and cross x site as fixed effects. A linear 

contrast was performed on the L.S. means of each level of generation associated with a 

particular trait. Fitness traits total number of flowers, total number of fruits, seeds/fruit, 

and biomass were included in this assessment. I am most interested in testing whether 

parents (PI & P2) in an associated cross outperformed (higher fitness) their hybrid 

offspring (F2s). Reciprocal crosses were also included and were noted by placing a 

capital R in front of the generations associated with the cross. A linear contrast: 

(Pl+P2)//2=(F2+rF2)/2 was used to test whether the performance of F2 is lower than the 

average performance of parents. 

RESULTS 

Germination 

Percentage of seedling emergence and time to germination significantly varied 

between northern and southern populations in the Michigan site but not the Georgia site. 

Timing of seedling emergence of northern populations was significantly delayed at the 

Michigan common garden site (mean=160 days), taking an additional 83 days to 

germinate (Table 1, Figure 2a). Plants of northern origin also took an additional 44 days 

to germinate than southern populations at the Michigan site (Table 1). Southern 

populations on average took 66 days to germinate at both sites (Figure 2a). A greater 

percentage of seedlings emerged from populations of southern origin (mean~13%) 
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compared to northern origin (mean~10%; Table 2, Figure 2b). The Michigan site 

exhibited a significantly higher percentage of seedling emergences (mean -15%) relative 

to Georgia (mean~7%). At the Michigan site, approximately 5% more southern seedlings 

emerged compared to seedlings of northern origin (Figure 2b). 

Phenology 

All phenological traits exhibited a significant site effect and site x origin interaction 

(Table 1 & 2). Phenology of plants of southern and northern origin varied significantly 

across sites, suggesting plasticity. Within sites, not all phenological traits exhibited 

significant variation, for example bolting rate. A significant difference in bolting rate was 

only observed in Georgia, where northern plants bolted significantly slower than southern 

plants (N mean~0.21, S mean~0.36). In Michigan, bolting rates of plants from different 

origins were very similar (N mean~0.44, S mean~0.47; Table 2, Figure 3a). Across sites, 

populations of northern origin were on average only 0.30 of their height at flowering 

relative to the 0.41 for southern plants, indicating slower bolting in northern plants. 

Unlike bolting phenology, distinct trends were observed in flower initiation and 

fruit maturation within both sites. Significantly earlier flowering and delayed fruit 

maturation was exhibited by populations present in their native range (Table 2, Figure 

3b,c). Native populations flowered six days sooner. There was variation in how delayed 

fruit maturation occurred in populations native to each site. Fruits of populations native to 

the southern common garden site matured 17 days later, while fruits of populations native 

to the northern site took an additional seven days to mature. Furthermore, there was a 

notable difference in timing of flowering of plants of southern origin across sites. 
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Southern plants took longer to flower in Michigan by approximately 10 days, while 

flowering of plants of northern origin varied by four days across sites (Figure 3b). 

Additionally, as observed with flowering time, fruit maturation of southern plants varied 

significantly across sites (Table 2). Fruits of plants of this origin took additional 22 days 

to mature, while fruit maturation of northern plants varied by four days. 

Reproductive Traits 

Size traits revealed greater variation between populations of different origin in the 

Georgia site. Size of plants were greater in Georgia (mean biomass=2.07g, mean 

height=73cm, mean branch length=35cm) compared to Michigan (mean biomass=0.53g, 

mean height=54cm, mean branch length=0.02cm). Furthermore, height at flowering and 

total branch length displayed a significant site x origin interaction (Table 2). Plants of 

southern origin were 0.24g heavier and 14 cm taller at flowering than northern plants at 

the Georgia site, and total branch length of plants of this origin was 34.98cm longer 

(Table 2, Figure 4). In Michigan, size of plants from different source origins was 

comparable. 

Reproductive traits revealed significantly greater reproductive output of populations 

native to common garden locations. All reproductive traits significantly varied across 

sites. Approximately 3x more flowers, 3x more seeds, and 6x more fruits were produced 

by plants from both source origins in Georgia than Michigan (Figure 5). Within sites, 

native populations produced approximately double the number of seeds and flowers 

compared to nonlocals. Fruit production of native populations did not significant differ 

from foreign populations (Figure 5 c). 

15 



www.manaraa.com

Total fruit number and seeds per fruit were used to estimate cumulative fitness of 

each source origin. Cumulative fitness of each origin significantly varied across and 

within sites (Table 3, Figure 6). Populations native to the region, where the common 

garden resided, had a cumulative fitness that was 1.3x higher than the nonlocals; same for 

both sites. The fitness levels found in Georgia were 9x higher than the levels found in 

Michigan. 

Phenotypic selection analyzes 

There was stronger direct selection (P) on the phenological and reproductive traits 

of C. americanum populations in the Georgia common garden site (Table 4). Earlier 

flowering time was favored at the Georgia site but no selection on flowering time was 

found in the Michigan site. There was significant selection towards a larger number of 

flowers, and biomass at the Georgia site but not in Michigan. Michigan displayed 

selection for greater height at flowering and smaller seed number, whereas no significant 

selection on these traits was evident in Georgia. Both Georgia and Michigan displayed 

significant selection on biomass, though the selection for biomass in Georgia was 1.3x 

greater (Table 4). 

Standardized nonlinear selection was evident in both sites (Table 4). A positive 

quadratic selection gradient is present for the number of flower produced, total branch 

length, and biomass at the Georgia site. This suggests that relative fitness (fruit 

production) is an increasing function of greater flower production and larger plant size 

(branch length and biomass). There is also negative quadratic selection gradient 

associated with number of days to first flower (Table 4). Individuals in Georgia that 
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flower earlier and yield a larger reproductive output will have higher fitness. In the 

Michigan common garden site, there are also positive quadratic selection gradients 

evident. Relative fitness is a function of greater height at first flower and biomass, and 

thus larger size would be associated with higher fitness. The number of seeds per fruit is 

the only trait that has a negative quadratic selection gradient at the Michigan site, 

indicating a decelerating relationship between relative fitness and seed number (Table 4). 

The phenotypic distribution of each trait was reviewed by analyzing graphs. Number of 

days to first flower and seeds per fruit are under stabilizing selection, indicated by a 

higher frequency of individuals expressing phenotypes in the middle of the distribution. 

Height at first flower, total number of flowers, total branch length, and biomass are under 

disruptive selection, evident by greatest number of individuals expressing a phenotype 

towards one end of the distribution. 

Hybrid breakdown 

Biomass indicated that there was a significant generational effect, while the other 

traits did not. (Table 5A, Figure 7). Linear contrast revealed that there was significant 

variation in number of seeds per fruit for each level of generation, which indicates hybrid 

breakdown. Furthermore, there is significant variation in biomass for each generation 

level that indicates heterosis (Table 5B). When analyzing variation across levels of 

generation by site and population cross-type, mean differences were consistently 

insignificantly for majority of the traits (Appendix C, D). 
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DISCUSSION 

Local adaptation 

Reproductive fitness clearly suggests both northern and southern populations are 

locally adapted. In this study, fitness is indicated by flower, seed, and fruit production, 

along side traits tied to size (height at first flower, biomass, and total branch length). 

Fitness of native plants was significantly higher at both sites, and thus they are 

outperforming individuals that are not native to their range. Furthermore, differences in 

plant size may also be related to reproductive success in a particular environment 

' (Primack 1987; Wesselingh et al. 1997). Greater size was observed by both origins at the 

Georgia site, implying that size of plant is more indicative of climatic differences. 

Overall larger plant size in the southern common garden, along with heritable phenotypic 

variation selected by natural selection within southern plants, has resulted in higher 

fecundity and higher reproductive output. Estimated cumulative fitness values serve as 

further evidence of local adaptation revealed by reproductive traits, illustrating higher 

fitness levels by natives as well. 

Percent germination was also used an indicator of fitness. Plants of southern origin 

had the highest percentage germination across sites, displaying higher fitness than 

northern populations at both sites. Higher fitness of southern plants at the Georgia site 

and lack of evident of higher fitness of northern plants at the Michigan site is inconsistent 

with the other reproductive traits. 

Underlying differentiation in phenology may facilitate local adaptation. In my 

study, phenological traits varied significantly across sites for plants of southern and 

northern origins. This suggests that phenological traits for both source origins are plastic. 
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Earlier flowering and delayed fruit maturation were exhibited by both origins within their 

native range. On the other hand, variation in bolting rate was only observed in the 

Georgia site, in which native populations bolted significantly earlier. Similar to my study, 

delayed fruit maturation and delayed bolting have been reported in C. americanum 

populations native to regions of northern latitude and higher elevations (Haggerty & 

Galloway 2011; Prendeville et al. 2013). Other plant species such as Arabidopsis 

thaliana demonstrate a positive correlation between number of days to bolt and latitude, 

where plants from northern latitudes bolted later than plants from southern latitudes. 

Temperature fluctuates in a systematic fashion along a latitudinal gradient (Johanson et al. 

2000; Stinchcombe et al. 2004). Thus, cooler temperatures may support later bolting in 

this species. Whether plasticity of phenological traits of southern and northern 

populations is adaptive can be addressed by relating phenology to reproductive fitness. 

Fitness is higher for populations present in their native range. It can be concluded that 

earlier flower, earlier bolting, and delayed fruit maturation may have been selected for in 

southern extent of the distribution, because they maximize the reproductive output of 

southern plants. While, earlier flowering, delayed fruit maturation, and delayed bolting 

may assist with increasing the fitness of northern plants. 

The role of time to germination in reproductive fitness is unclear. Earlier 

germination in the Georgia common garden site suggests that southern plants would 

complete their reproductive cycle faster. Timing of germination may be a reflection of a 

suite of environmental factors that could influence seedling emergence; light, soil 

moisture, salinity, and temperature (Tanveer et al. 2012). Temperature has been shown to 

significantly increase phenological progression in warmer temperatures (Gordo & Sanz 
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2010; Hulber et al. 2010; Galloway and Burgess 2009; Haggerty & Galloway 2011), and 

thus could promote shorter germination time at southern latitudes. 

Phenotypic selection 

There is selection towards greater number of flowers, biomass, and length of 

branches in the southern common garden site. While, only a few reproductive traits 

(height at flower, biomass, and seeds) are under significant selection at the northern site. 

This shift towards higher reproductive output (flowers) and overall size (biomass, 

' branches) in the southern site is also observed, indicating that plasticity is adaptive. 

Unlike my study, previous experimental research on C. americanum have report no 

relation between biomass and latitude gradient. However, what studies have found that 

are consistent with my results is that there are significant variations in branch lengths and 

final plant size (Kalisz & Wardle 1994; Prendeville et al. 2013). In other species such as 

Arabidopsis thaliana, biomass has been shown to negatively correlate with elevation with 

smaller plants associated with cooler environments (Montesnios-Navarro et al. 2011). 

Length of growing season, amount of rain, temperature, and characteristics of vegetation 

cover can influence plant size (Crauford & Wheeler 2009; Rajasekar et al. 2013). A 

combination of environmental factors existing along a latitudinal gradient may be 

contributing to overall selection for larger size. 

Furthermore, I observed significant selection for earlier flowering in the southern 

populations in the southern site but not the northern site. The length of time to flower 

initiation can influence how many flowers or fruits an individual can produce during a 

growing season (Ollerton & Lack 1998). Earlier flowering may be beneficial in that there 
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is a longer flowering duration, higher likelihood of fertilization and visitation of 

pollinators, and reduction in competition with other flowering species; contributing to 

reproductive success (Mosquin 1971; Rathcke & Lacey 1985; Gentry 1974; Heinrich 

1975; Stiles 1975; Alonso 2004). Longer growing seasons present in the south would 

allow an individual plant to produce more flowers (Haggerty & Galloway 2011). Greater 

flower production in the south could possibly be facilitated by a longer growing season 

and earlier flower initiation. This is in accordance with the expectation that longer 

growing season and warmer temperatures would encourage earlier flower initiation 

(Fitter & Fitter 2002; Etterson 2004; Griffith & Watson 2005; Parmesan 2007; Gordo & 

Sanz 2009; Galloway & Burgess 2012). This behavior has also been observed in C. 

americanum at lower elevations, warmer conditions (Haggerty & Galloway 2011). 

Delayed flowering initiation has also been observed by other species native to southern 

latitudes such as Lythium salicaria (Olsson & Agren 2002). 

It has been demonstrated that flowering time can be a plastic, responding to 

environmental cues such as photoperiod, vernalization, and resource availability that 

indicate when conditions are best to reproduce (Levy & Dean 1998; Gordo & Sanz 

2009). However, flowering time may also be reflective of internal cues (Levy & Dean 

1998; Burgess et al. 2007; Haggerty & Galloway 2011). The results of this study suggest 

that flowering time is an adaptive response of southern and northern populations. When 

populations were closer to their home sites displayed quicker flowering initiation but 

when placed in a location outside of their native range their flowering period was 

delayed. C. americanum, along with Melandrium and Aradidopsis, exhibit distinct 

flowering genotypes across a specified geographic range (Lawrence 1963; Westerman 
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1971; Stincombe et at. 2004). Thus, variation in flowering time could potentially be 

reflected of genotypes selected in a particular environment. 

The magnitude of selection and the traits under selection appear to differ across 

sites. To confirm whether selectional gradients differed across sites, analysis of 

covariance was performed to assess if selection gradients differed across the common 

garden sites. There was significant site x gradient interaction for the total number of days 

to first flower, total number of flowers, seeds per fruit, height at first flower, total 

branches, and biomass. This indicates that magnitude of selection on traits at each site 

varies and this is influencing relative fitness of populations. For majority of these 

reproductive and phenological traits, expect for biomass, there was evidence of local 

adaptation suggested by higher fitness of populations native to each site and significant 

site x origin interaction. All of these traits also exhibited a significant site effect. This 

confirms that the site interaction being observed is due to differences in magnitude of 

selectional gradients that exist at each site. 

Hybrid Breakdown 

There is little evidence to suggest that genetic differentiation between northern and 

southern populations has resulted in hybrid breakdown. Across population cross-types 

and sites, F2 generations did yield reproductive outputs as large as their associated 

parents, suggested by linear contrast. This also holds true within each site (Appendix C, 

D). The results of this study are in accordance with the common observation that few 

postzygotic barriers to hybridization develop polyploidy. In polyploids, there is a genetic 

buffer against allele fixation. Any mutations that form in a population are not likely to 
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become fixed in a population (Stebbins 1950). C. americanum is an autotetraploid and if 

genetic differentiation occurred among populations, a genetic buffer would prevent new 

mutations from becoming fixed. This could either slow down the formation of a 

reproductive isolation barrier or limited the possibility of epistatic incompatibility. 

Adaptive population differentiation 

Adaptive population differentiation occurs when natural selection acts upon 

heritable phenotypic variation (Linhart & Grant 1996; Miaud & Merila 2001; Garcia et 

al. 2007). Selective forces have acted upon reproductive and phenological variations 

present within C. americanum populations of different origins, resulting in genetic and 

phenotypic differentiation. Varying environmental conditions present along a latitudinal 

gradient has facilitated differentiation. Furthermore, magnitude of selection was not 

uniform across the gradient, creating differences in selection across sites. Higher fitness 

levels at home sites suggest that differentiation between these source origins is adaptive. 

This study demonstrates that utilizing geographical variations such as latitude can assist 

in investigating whether locally adapted populations have formed across a species range. 
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Table 1. Nested ANOVA of minimum number of days to germinant emergence and percent germination across nine parental C. 
americanum populations, five from a northern origin and four from a southern origin, planted into common gardens at sites in Georgia 
(south) and Michigan (north). The experiment was repeated in two years. F-values are listed for each fixed and random effects. 
Block(Site, Year), Population(Origin) are the random effects in this model. There are seven degrees of freedom associated with 
Population[Origin] and 104-111 degrees of freedom for Block(Site, Year). Degrees of freedom are one for each fixed effect. 

Response 
Variable 

Site Year Origin 
Origin x 

Site 
Origin x 

Year 
Sitex 
Year 

Pop 
(Origin) 

Block (Site, 
Year) 

Days to 
germination 

28.98*** 
(381) 

0.06 
(385) 

5.08 
(391) 

12.36*** 
(378) 

0.58 
(379) 

66.94*** 
(384) 

6.81*** 
(271) 

1.57** 
(271) 

% germination 
77.06*** 

(1220) 
0.15 

(1214) 
12.93** 
(1229) 

0.15 
(1218) 

0.07 
(1214) 

0.02 
(1220) 

1.30 
(1113) 

1.48** 
(1113) 
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Table 2. ANOVA of reproductive and phenological traits of C. americanum populations of northern and southern origin planted at 
Georgia and Michigan common garden sites (2014). F-values are listed for each fixed and random effects. Block[Site], Pop[Origin] 
are the random effects in this model. There are seven degrees of freedom associated with PopfOrigin] and 36 degrees of freedom for 
Block[Site]. Degrees of freedom are one for each fixed effect. Denominator d.f. are in brackets. (*)P<0.10, *P<0.05, **P<0.01, 

Trait Site 

105.33*** 
(503) 

Origin 

0.55 
(503) 

Origin x Site 

8.78** 
(447) 

Pop|Origin| 
4 Q7*** 

(447) 

Block|Site| 

A. 
Phenological 

Bolting rate 1.68** 
(447) 

Traits Number of days 
to first flower 
Min number of 
days to fruit 
mat 
Seeds per fruit 

Total number of 
fruit 
Total number of 
flowers 

11.19** 
(249) 

0.14 
(249) 

20.43*** 
(204) 

16.89*** 
(204) 

0.63 
(204) 

14.45** 
(242) 

18.65** 
(296) 

1.04 
(242) 

6.77* 
(197) 

0.71 
(197) 

1.19 
(197) 

B. 
Reproductive 

0.58 
(297) 

23.21*** 
(290) 

5.07*** 
(252) 

1.04 
(252) 

Traits 5.21* 
(272) 

38.26*** 
(558) 
0.03 
(249) 

10.84** 
(356) 

50.4967*** 
(237) 

0.02 
(273) 
1.21 

(452) 
0.90 
(249) 
6.07* 
(356) 

1.17 
(228) 

2.43* 
(228) 

3.68*** 
(228) 

21.89** 
(557) 

15.19*** 
(204) 

10.95** 
(311) 

0.34 
(385) 

3.42** 
(204) 
0.97 
(311) 

4.53*** 
(385) 

C. Size Traits Height at 
flowering 
Total branch 
length 
Biomass 

2.78*** 
(204) 
0.59 
(311) 

4.13 
(299) 

0.29 
(290) 

2.45* 
(254) 

4 93*** 

(254) 
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Table 3: ANOVA of cumulative fitness of northern and southern origins planted at 
Georgia and Michigan common garden sites (2014). F-values are listed for each fixed and 
random effects. BlockfSite] and Pop[Origin] are the random effects in this model. There 
are seven degrees of freedom associated with Pop[Origin] and 38 degrees of freedom for 
Block[Site]. Degrees of freedom are one for each fixed effect 
Effect d.f. denominator F-value p-value 
Site 369 9.52 0.0276 
Origin 369 0.18 0.6813 
Site x Origin 241 7.29 <0.0001 
Pop[Origin| 302 4.94 O.0001 
Block[Site] 302 1.71 0.0022 
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Table 4. Standardized selection differentials (S), linear gradients ((3), and quadratic gradients (y) of northern and southern 
Campanulastrum americanum populations planted in common garden sites located in Columbus, GA and Hastings, MI. 
To detect differences in selection across common garden sites, site and gradient interactions were analyzed. The F values are 

ported for these ANCOVAs. Site means: GA (29.58), MI (16.09). (*)P<0.10, *P<0.05, **P<0.01, ***P<0.001 

B Y 

Trait GA site MI site Site x p GA site MI site Site x y 

A. Phenological 
Traits 

Days to first 
flower 

-0.844*** -0.266 7.034*** -0.248(*) -0.175 1.940 

Bolting 
Rate 

-0.174 0.196 1.727 -0.047 0.176 34.43*** 

B. Reproductive 
Traits 

Total # of 
flowers 

1.26*** 0.136 88.305*** 0.558*** 0.062 9.38** 

Seeds per 
fruit 

0.008 -0.432* 8.805*** 0.063 -0.123* 6.59* 

C. Size Traits Height at 
first flower 

-0.334 1 Qy^*** 97.61*** -0.058 0.511*** 3.83(*) 

Total 
Branches 

0.636** 0.044 14 94*** 0.116** 0.121 8.27** 

Biomass j 10*** 0.842*** 133.78*** 0.375*** 0.634*** 20.19*** 
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Table 5A. ANOVA testing the effects of generation on expression of reproductive traits of C. americanum populations. The 
numerator degrees of freedom is one. F-ratio is listed for each effect. 

Trait 

Total # of seeds 

Total # of fruit 

Total # of flowers 

Biotnass 

d.f numerator 

Site Gen 

19.65 *** 3.04(*) 

15.16H 2.3: 

9.98** 1.16 

24.20 *** 7.56 ** 

**d.f. denominator: 545-673 

Cross 

0.81 

0.47 

1.85 

2.64s1 

Site x Gen Cross x Gen 

0.00 

0.04 

0.32 

1.97 

0.36 

0.: 

0.42 

0.84 

Cross x Site 

0.70 

0.99 

0.78 

3.28** 
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Table 5B. Linear Contrast of L.S means generated by ANOVAs for reproductive traits 
that quantifies the level of reproductive fitness exhibited by each generation (P, F2, RF2) 
of C. americanum populations. Reciprocal crosses were also included these analyzes and 
were noted by placing a capital R infront of the generations associated with the cross. P- 
values indicate whether F2 (F2 +RF2) means are significantly different from parents. The 
numerator d.f. is one. An arrow in the mean comparison column indicates if F2s had 
means lower or higher than the parents. 

Traits d.f. denominator    F-ratio p-value Mean 
Comparison 

Number of 
Seeds/fruit 

547 8.83 0.003 4 

Biomass 555 7.94 0.005 

Total number of   507 
fruits 

0.13 0.777 

Total number of   675 
flowers 

0.11 0.746 
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Figure 1. Location of nine Campanualastrum americanum populations (AL, NE, MI, TN, 
OK, MN, MS, WI, and OH) planted in common garden sites, Pierce Cedar Creek 
Institute in Hastings (MI) and CSU's Oxbow Meadows Environmental Learning Center 
in Columbus (GA). Common garden site locations are noted with stars. Red lines 
indicated which populations were crossed to generate Fls and F2s. 
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Figure 2. Comparing L.S. mean (+/- S.E.) A) minimum number of days to 
germination, B) percent germination across northern and southern C. 
americanum populations at Georgia and Michigan common garden sites. 
Means reflect germination data that was collected for a period of two years 
(2012-2014). 
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Figure 3. Assessing variations in 
phenology. Comparing log+1- 
transformed mean (+/- S.E.) A) bolting 
rate , B) number of days to first flower, 
and C) minimum number of days to fruit 
maturation across northern and southern 
C. americanum populations at Georgia 
and Michigan common garden sites 
(2014). 
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Figure 4. Assessing traits 
indicating size. Comparing log+1- 
transformed mean (+/-S.E.) 
A) height at flowering, B) total 
branch length, and C) biomass 
across northern and southern C. 
americanum populations at Georgia 
and Michigan common garden sites 
(2014). 
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Figure 5. Assessing variation in 
reproductive traits. Comparing 
log+1 -transformed mean (+/-S.E.) 
A) total number of flowers, B) total 
number of fruits, C) seeds per fruit, 
and across northern and southern C. 
americanum populations at Georgia 
and Michigan common garden sites 
(2014). 
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Figure 6. Comparing log+1-transformed cumulative fitness means of source origins 
within each common garden site. Cumulative fitness was calculated by multiplying total 
number of fruits by number of seeds per fruit. Data collected from the rosette common 
garden experiment (2014) was used in this calculation. 
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Figure 7. Assessing hybrid breakdown by comparing L.S. means (+/- S.E.) A) total number of flowers, B) total number of fruits, C) 
number of seeds/fruit, and D) biomass. Linear contrasts were performed to detect significance between means of parents and F2s ot C. 

americanum populations. 
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Appendix A: Geographical locations of nine Campanualastrum americanum populations 
(AL, NE, MI, TN, OK, MN, MS, WI, and OH) planted in common garden sites. 

Populations Latitude Longitude 

MS 31.74 -88.52 

AL 31.92 -86.69 

OK 33.95 -94.57 

TN 35.77 -88.06 

NE 40.75 -96.72 

OH 41.12 -81.52 

MI 42.30 -85.36 

WI 43.35 -89.95 

MN 44.82 -93.31 
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Appendix Bl: Pearson product-moment correlation coefficients for reproductive and phenological traits of 
C. americanum populations planted in the Georgia common garden site (2014). 
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Appendix B2: Pearson product-moment correlation coefficients for reproductive and phenological traits of southern and northern 
C. americanum populations planted in the Michigan common garden site (2014). 

Number of 
Days HAF {era} 

iota Branch 
Langtti |«n$ $mm pw fruit Btomass^l 

Number of 
trulls 

TOTAL 
SFU3WERS Ratio 

MuMtarefDaM      flsaraart 
CorreiaBon 

Stg. (2-t3lM| 
N 

1 

128 

-.323"" 

JMM 

12S 

-.024 

.783 
126 

-.073 

.375 
128 

-.172 

.052 
128 

-JHBS" 

.803 
127 

-.155 

.MM 
121 

.330'" 

.000 
12s 

HAF fan)                 Pearson 
Cornrtatfofi 

Slg. {2-taistf} 

N 

-.323" 

.008 

128 

1 

12S 

.112 

.205 

129 

.258-"" 

.§§1 

123 

,8U" 

.000 

1 23 

.867" 

.OTA 

12S 

.sat" 

.006 

129 

-.078 

.381 

12S 

T©iaf Branch           Pearson 
Larigtri (cnf            eorrsMlon 

Slg. (MMMdg 

N 

-.024 

.783 

121 

.112 

.2*5 

12S 

1 

283 

.071 

.324 

135 

.155* 

,041 

174 

.130 

JMS 

1S2 

-.040 

.573 

203 

.045 

.575 

12S 

■■Mi per fruit        Pearson 
Csmsttitors 

»g. PIMM] 

N 

-.§73 

.375 

123 

.2S8" 

.MM 

128 

.071 

.324 

195 

1 

135 

.194" 

.(HI 

17f 

.228 

.004 

tei 

.218** 

.MM 

135 

.124 

.161 

129 

Slg. p-tals«| 

N 

-.172 

.•a 
12a 

.114" 

JMM 

129 

.9*1 

174 

.154" 

.#11 

171 

1 

174 

.751" 

.000 

1€2 

.411'* 

.000 

174 

-.814 

.875 

123 

ffcfii&SF&T fruits     Perron 
Corrstatton 

Slg. (2-tlMOI 
N 

-jits" 

.ma 
127 

MB** 

.000 
12s 

.130 

.€93 
162 

.228** 

.0@4 
161 

.751"* 

JMM 
162 

1 

tea 

.41fi" 

.©it 
1S2 

-.048 

.552 
128 

TOTAL FLOWERS       P&arscm 
Corrrtaiteri 

Mg. [2-taB8tff 

H 

-.155 

.MM 
12i 

.3§1" 

.MM 

123 

-.040 

.573 

283 

.215" 

.MM 

135 

.418"- 

.©0(5 

174 

.416"" 

.000 

162 

1 

203 

.018 

.840 

■29 

Ratio                       Pearson 
eorreteBors 

Sig. {24a«Wl 
H 

.350** 

.MM 
128 

-.871 

.381 
12s 

.849 

.573 
129 

.124 

.161 
123 

-.614 

.815 
129 

-.048 

.532 
121 

.eis 

129 

1 

125 

•*. Qarreisifon It algrstrteifrt at tiw O.il Mm |2-t:»®tf|. 
v riMiMiMiiw is MMMMM! at «■ 0.05 mm (24mi&m, 

50 



www.manaraa.com

Appendix C: Detecting hybrid breakdown by analyzing whether a linear relationship ((P1+P2)/2=(F2+rF2)/2) exists across two generates of C. amencanum 
(P, F2/RF2) for each population cross-type. Generations associated with reciprocal crosses were noted by placing R infront of the generation catoegory. Contrast 
linear analyzes were performed on a selected group of reproductive traits that assess the level of reproductive fitness exhibited by each generation at the Georgia 
CUIIIIIlUIl gcllUCll site.   Ill 

Population cross- 
type 

Trait d.f Error F-value p-value Mean comparison 

AL69 x NE59 Total number of seeds 31 11.24 0.0021 

Biomass 43 3.67 0.0624 = 

Total number of fruits 50 2.20 0.1440 = 

Total number of flowers 45 1.80 0.1870 ^— 

1VTI44 x MS55 Total number of seeds 39 2.21 0.1232 — 

Biomass 51 8.75 0.0047 

Total number of fruits 45 1.12 0.2948 = 

Total number of flowers 43 0.33 0.5655 = 

OK61 x MN38 Total number of seeds 26 1.37 0.1395 = 

Biomass 34 2.11 0.0652 = 

Total number of fruits 29 0.68 0.4097 = 

Total number of flowers 34 2.13 0.1536 = 

MS55X WI14 Total number of seeds 43 7.47 0.0091 

Biomass 58 2.01 0.1617 = 

Total number of fruits 45 1.58 0.2154 — 

Total number of flowers 46 1.40 0.2424 = 

OH64 X OK61 Total number of seeds 36 0.00 0.9941 = 

Biomass 43 0.02 0.8573 = 

Total number of fruits 37 0.00 0.9590 = 

Total number of flowers 42 1.61 0.2113 = 

MN38 X TN19 Total number of seeds 22 3.89 0.0613 = 

Biomass 30 0.33 0.5707 = 

Total number of fruits 23 0.45 0.5097 = 

Total number of flowers 29 0.02 0.8990 = 
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Appendix D: Detecting hybrid breakdown by analyzing whether a linear relationship ((Pl+P2)/2=(F2+rF2)/2) exists acrosstwo V^™^™£^ 
(P F2/RF2) for each population cross-type. Generations associated with reciprocal crosses were noted by placing R "front °f the ^^^7^ 
inear analyzes were performed on a selected group of reproductive traits that assess the level of reproduct.ve fitness exhibited by each generation at the 

linear analyzes were peuoimcuun 5     F        F ;„j;^toc ;f cj, h*A means nwer or hiaher than the parents. 
Mi.i.mi.n mmmnn oarden site The numerator d.f. is one. Arrows in the mean c jmpanson column muii^ai ■"'-'"-    t- , 

Population cross- Trait d.f Error F-value p-value Mean Comparison 

AL69 x NE59 Total number of seeds 36 0.04 0.8401 

Biomass 54 0.06 0.8034 ~ 

Total number of fruits 50 2.48 0.1215 — 

Total number of flowers 59 4.75 0.0332 

MI44 x MS55 Total number of seeds 66 0.00 0.9888 

Biomass 82 2.49 0.1187 = 

Total number of fruits 72 5.39 0.0231 

Total number of flowers 73 0.24 0.6260 

OK61 x MN38 Total number of seeds 39 0.07 0.8001 — 

Biomass 44 0.17 0.6808 = 

Total number of fruits 39 0.29 0.5939 = 

Total number of flowers 42 4.70 0.0359 

MS55XWI14 Total number of seeds 53 1.47 0.3155 — 

Biomass 70 3.15 0.0805 = 

Total number of fruits 61 3.20 0.0787 

Total number of flowers 64 0.13 0.7178 

OH64 X OK61 Total number of seeds 59 0.15 0.6977 ~ 

Biomass 58 0.04 0.8334 
= 

Total number of fruits 77 0.33 0.5660 = 

Total number of flowers 63 0.39 0.5371 
= 

MN38 X TN19 Total number of seeds 54 0.17 0.6788 = 

Biomass 58 0.64 0.4283 

Total number of fruits 52 0.20 0.6562 

Total number of flowers 54 0.01 0.9259 k 1 
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populations at Georgia and Michigan common garden sites (2014). 

0.6 

0.5 

Populations 

-♦-MN38 
& 0.4 to 
St 

-♦-NE59 o> 
-•-OH64 

-*-MI44 

c 
1 0.3 
O 
m -#»W'i14 

~««AL69 c 
~«"MS55 

-*"OK61 

ra 
| 0 2 

-•-TN19 

01 

Common Garden Sites 
Common Garden Sites 

53 



www.manaraa.com

Appendix F: Assessing variations in reproductive fitness across C. americanum populations. Comparing L.S. means A) percent 
germination , B) total number of flowers, C) number of fruits, and D) number of seeds per fruit across northern and southern 
populations at Georgia and Michigan common garden sites (germ data from 2012-2013; rosettes during 2014). 
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Appendix G: Assessing variations in size across C. americanum populations. Comparing L.S. means A) total branch length, B) 
biomass, and C) height at flowering across northern and southern populations at Georgia and Michigan common garden sites (2014). 
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